GEOLOGICAL REPORT ON THE MURVEY MOLYBDENUM PROSPECT
CONNEMARA, COUNTY GALWAY, IRELAND

PREPARED FOR Highbank RESOURCES LTD.

By

Consulting Geologist

November 21, 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION AND TERMS OF REFERENCE</td>
<td>1</td>
</tr>
<tr>
<td>DISCLAIMER</td>
<td>1</td>
</tr>
<tr>
<td>PROPERTY DESCRIPTION AND LOCATION</td>
<td>2</td>
</tr>
<tr>
<td>ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY</td>
<td>5</td>
</tr>
<tr>
<td>GEOLOGICAL SETTING</td>
<td>6</td>
</tr>
<tr>
<td>DEPOSIT TYPES</td>
<td>9</td>
</tr>
<tr>
<td>MINERALIZATION</td>
<td>9</td>
</tr>
<tr>
<td>EXPLORATION</td>
<td>10</td>
</tr>
<tr>
<td>DRILLING</td>
<td>12</td>
</tr>
<tr>
<td>SAMPLING METHODS AND APPROACH</td>
<td>14</td>
</tr>
<tr>
<td>SAMPLE PREPARATION, ANALYSES AND SECURITY</td>
<td>15</td>
</tr>
<tr>
<td>DATA VERIFICATION</td>
<td>15</td>
</tr>
<tr>
<td>ADJACENT PROPERTIES</td>
<td>15</td>
</tr>
<tr>
<td>MINERAL PROCESSING AND METALLURGICAL TESTING</td>
<td>15</td>
</tr>
<tr>
<td>MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES</td>
<td>15</td>
</tr>
<tr>
<td>INTERPRETATION AND CONCLUSIONS</td>
<td>16</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>17</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>TECHNICAL GLOSSARY</td>
<td>19</td>
</tr>
<tr>
<td>CERTIFICATE OF AUTHOR</td>
<td>20</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

- Figure 1 Location Map 2
- Figure 2 Plan of Prospecting Licence 934 3
- Figure 3 Protected Areas 3
- Figure 4 Map of Galway Granite 6
- Figure 5 Geology of Murvey Area 8
- Figure 6 Soil Geochemical Surveys 11
- Figure 7 Plan of Diamond Drilling 13
SUMMARY

Highbank Resources Ltd. has the option to acquire the Murvey Property (Prospecting Licence 930) located on the north shore of Galway Bay in Connemara, the western part of County Galway, Republic of Ireland. Molybdenum was discovered within the Galway Granite at Murvey during the 19th Century. However, serious exploration for molybdenum was confined to the periods 1954-55 and 1964-70. Government drilling in the earlier period (1428 metres in 24 holes) identified a northeast-trending zone of molybdenum mineralization. Significant molybdenum mineralization was intersected in 18 of the holes. Geochemical soil sampling during the later exploration period outlined five molybdenum anomalies within an area of about one square kilometre, one of which was partially co-extensive with the known molybdenum zone. Subsequent drilling (695 metres in 14 holes) was confined to the previously drilled portion of the mineralized area. The results of this drilling have not been located. A government report published a “resource estimate” of 240,000 tonnes of 0.13% molybdenum, but the data used to produce this estimate cannot be confirmed. The known mineralization appears to be associated with north-northeast faulting and fracturing. Molybdenite is contained mainly in quartz veinlets and fracture coatings. Loss of molybdenite in small-diameter core drilling is common in mineralization of this type. In a test at the nearby Mace Molybdenum Property (also under option to Highbank Resources Ltd.) it was estimated that “20 to 45%” of the molybdenum content in the rock was lost in coring. The previous drilling tested a portion of only one of the five soil geochemical anomalies. The reason for this is unknown, but it may have been due to an erroneous perception of the unfavourability of the rocks lying northeast of the known mineralization. The writer concluded that the Murvey Prospect represents an attractive molybdenum target and that surface exploration and diamond drilling are warranted. A program of geological mapping, photo-geological interpretation, trenching and diamond drilling has been recommended. The recommended work is estimated to cost US$168,000.
INTRODUCTION & TERMS OF REFERENCE

Highbank Resources Ltd. has an option to acquire Prospecting Licence 930 from Gary Robert Brown, the Licensee. The licence encompasses a molybdenum prospect that was explored between 1954 and 1970.

The present report was prepared at the request of Highbank Resources Ltd. It documents the results of several drilling programs and technical surveys, and it contains recommendations for further work. The report has been prepared in accordance with the provisions of National Instrument 43-101.

The data on the results of the various drilling programs and on the technical surveys is incomplete since only brief reports were filed with the Government by the previous operators. Most of the information contained in the present report was obtained from data sheets and maps supplied by Anglo United Trust and from discussions with several geologists who were employed by that consortium during its exploration at Murvey. The data included drill logs and assays pertaining to some of the drill holes, as well as geochemical maps. Additional information of a more general nature was obtained from the technical papers listed in the REFERENCES section of the present report.

I examined the Murvey Prospect on behalf of Teck Corporation in February, 1981, accompanied by Anglo United Trust geologists. During March 2005, I examined the files of the Geological Survey of Ireland in order to confirm that no additional exploration work had been carried out in the vicinity of the Mace prospect since the date of my earlier examination. I revisited the area during July 2006 in order to assess changes in land use and housing developments in the region.

RELIANCE ON OTHER EXPERTS

Most of the factual data on the Murvey Prospect were provided by Anglo United Trust. The remainder were derived from maps and reports noted under “References.” The author is solely responsible for the interpretation of the results of the drilling and technical surveys and for the conclusions stated below.
PROPERTY DESCRIPTION AND LOCATION

Prospecting Licence 930 ("the Property") covers an area of 29.55 square kilometres. The Licence is in force for a period of six years from September 25, 2006

The Licensee has the right to enter on the Licensed Area and to "do all things the Licensee considers necessary or desirable for the purpose of ascertaining the character, extent or value of the Base Metals and Silver lying on or under such land." During the first two-year phase of the Licence, the Licensee must carry out with due diligence "the work programme as set out in the Third Schedule of the Licence" and shall spend not less than 2500 Euros on such prospecting work. If the Licensee wishes the Licence to continue in force beyond the first phase, a work program must be proposed by the Licensee for the approval of the Minister for Communications, Marine and Natural Resources one calendar month before the beginning of each subsequent two-year phase of the Licence. This has been done.

The property boundary coincides with the partial boundaries of various Townlands and with the sea-coast and has been legally surveyed.

There are no mineral resources, mineral reserves, mine workings, tailings ponds or waste deposits on the Licence. The general outline of the known mineralized area at Murvey is shown on Figure 2.

The Issuer has the option to acquire a 100% interest in the Property.
I am not aware of any royalties, back-in rights, payments or other agreements and encumbrances to which the property is subject, except for a “Royalty for State Minerals.” This royalty is negotiated for each new mining lease once the economics of the deposit have been determined.

Three environmentally sensitive areas are present within the boundary of the Property. These are outlined on Figure 3.

1) A portion of the regional Connemara Bog Complex covers the central and north-western parts of the Property. The bog complex is designated as a National Heritage Area (NHA) and as a Special Area of Conservation (SAC) under European Union regulations. A segment of the extreme northern portion of the Murvey Prospect impinges on the restricted area. [It should be noted that the area of Connemara Bog that covers a portion of PL 930 is only one of a number of very large areas covered by the Bog Complex in western Ireland.]

2) The Dog’s Bay protected area covers a small boot-shaped peninsula, the southernmost part of the Property. It covers a machair (defined below) and several sites of archeological interest. It is designated both NHA and SAC. Dog’s Bay is located 2.5 kilometres from the Murvey Prospect.

3) The Murvey Machair is located along the coast south of Murvey and extends north into the area covered by the diamond drilling. It is designated SAC. Machair is the name given to unique dune-sand areas modified by both natural processes and ancient agricultural practices. Machair does not appear to be an appropriate designation for the northern portion of this SAC since the conditions do not meet several of the criteria that define Irish machair. Since machair is largely a geological phenomenon it is discussed in more detail under “Local Geology.”

Proposals for drilling require a minimum of two weeks’ advance notice in writing to the Minister. This will be done after planning of the drilling program has been completed.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

[State Prospecting Licence Areas have been established throughout Ireland. These tend to be very large, and are not sub-divided to suit the applicant. In the present report, the recommended work is restricted to a very small area in the south-western part of Licence 930. Since I have no information relating to the economic geology of the remainder of the Property, only the area surrounding the known zones of mineralization is discussed in this report. The term “Murvey Prospect” refers to the area within a kilometre or so of the previous Murvey drilling area (Fig.2). Licence 930 hereinafter is referred to as “the Property.”]

The Murvey Prospect is located in an area of low rocky hills interspersed with shallow peat bogs. It lies on the north shore of the western extension of Galway Bay at its convergence with the Atlantic Ocean -- close to the westernmost point of Ireland. Most of the land in the area is under pasture.
The prospect is accessible via Regional Road R341 from Clifden, the closest major town, which lies 18 kilometres to the north. Galway, the main city of County Galway, is located about 60 kilometres to the east (Figure 1).

The climate is wet-temperate. It imposes no limit on the length of the operating season for an open-pit mine.

Almost all of the land in the region is held by individual owners. The right of working most minerals (including molybdenum and copper) is vested to the State. Accordingly, the government will expedite the acquisition of surface rights for the purpose of mining on private land.

High-voltage power is available in the region. Water resources in the region are ample for mining production. I have not investigated potential areas for waste disposal and plant sites in detail. However, I am not aware of any matters relating to topography, land acquisition or environmental issues that would create unusual problems in these matters.

HISTORY

The Property has been prospected periodically since the end of the 19th Century when molybdenite was recognized for the first time in the area.

1954-1955. An exploration program directed by the Geological Survey of Ireland (GSI) included 24 diamond drill holes totaling 4683 feet (1428 metres) at the Murvey Prospect. A resource of 240,000 tons at 0.13% Mo was estimated. [This may have included the results from later drilling.]

1964-1967. Geological and geochemical investigations were carried out on licences PL 930 (Murvey) and PL 934 (Mace Head) in search of molybdenite mineralization during the period 1963-64 as a result of cooperation between Tara Exploration and Development Company Ltd. and the Geochemical Prospecting Research Center, Royal School of Mines (Schultz, 1964). These first studies highlighted the possibilities of the occurrence of economic molybdenite concentrations in the form of late-magmatic segregation deposits.

1968-1969. Anglo United Trust completed a more comprehensive geochemical survey for molybdenum and also for copper (Figure 6c). The sample spacing was 500ft x 250ft (~150m x 75m). An extensive zone anomalous in molybdenum was located, centred on Namanawaun Lough [much diminished in size since that time], that extended from the granite-metamorphic contact immediately east of the lake into the metamorphic rocks lying to the north (Figure 6a). Geological mapping indicated concentrations of molybdenite along fractures close to this contact.

1969-70. Anglo United Trust completed 695 metres of diamond drilling in 14 holes (930-2 to 930-15) at Murvey. Geologists reported that the drilling showed some loss of molybdenite due to the grinding of the core. Results of this drilling are not in the Open
Files from the GSI but an Anglo United report (Burns, 1970) states that the drilling indicated that molybdenite was distributed sporadically in a zone along the granite/schist contact. The major part of the drilling was concentrated on testing the extent of the mineralization along the strike of the granite/schist contact. The northward extent of the mineralization beneath the schist outcrop has not been examined beyond 50 metres north of the contact.

GEOLOGICAL SETTING

Regional Geology

The Property is located along the north-western margin of the Galway Granite (Figure 4). The Galway Granite is a composite east-west-trending granodiorite to leucogranite pluton of Devonian age that crops out along the northern margin of most of Galway Bay and extends inland for about 20 kilometres. It has an area of approximately 600 square kilometres. The granitic rocks are believed to be essentially co-magmatic, i.e., they comprise a semi-continuous igneous series that apparently crystallized at about the same time. The units of this suite that are found on the Property have been classified as Murvey Granite and Errisbeg Townland Granite (Figure 5).

The granitic rocks were intruded into a variety of metamorphosed mafic rocks of Ordovician age or older.

![Figure 4 Map of Galway Granite after Max et al. (1978)](image)

Local Geology

The information on the bedrock geology of the Murvey area in this section of the report was derived from Sheet 10 (Connemara) of the “Bedrock Geology 1:100,000 Series” that accompanies the Geological Survey of Ireland report “Geology of Connemara” (Morris et al, 1995). I carried out a preliminary air-photo interpretation without the benefit of stereo coverage. It is useful mainly for its more accurate definition of faults than that shown on Sheet 10. The discussion of the Murvey Machair was based on my field examination as well as on the geochemical data and on an examination of the colour air photo.
The oldest rocks in the area are elements of a metamorphic assemblage, predominantly gabbro and amphibolite. They were intruded by the Murvey granite and the Errisbeg Townland granite phases of the Galway Granite to the south. [The diamond drilling area at the Murvey Prospect is located astride the contact between the granitic rocks and the metamorphic complex.] The only other major feature is the Delaney Dome Metarhyolite Formation that occupies the north-central portion of the Property. It constitutes a part of the metamorphic package in the region.

The faults shown on Figure 6 and 7 were derived from air-photo interpretation. A NE-trending fault locally follows the contact between the Murvey granite and the metamorphic rocks as shown on Figures 5. There is a parallel fault about 100 metres to the northwest. A similar, but older, ENE fault pair is evident on the east side of the NE faults.

These fault pairs appear to be particularly significant because of their intimate relationship to the Murvey Prospect. All of the drilling was done close to the geological contact marked by the easterly of the NE fault pair (Figure 7). However, the molybdenum geochemical anomaly follows the NNE faults, suggesting that mineralization is related to this faulting rather than to the (later?) contact fault.

Diamond drilling carried out in 1954 apparently was not consulted during the preparation of the 1995 geological map. The drilling indicates that the granite is exposed west of the putative bounding-fault. The contact between the granite and the metamorphic rock apparently has been offset by left-lateral displacement (Figure 7).

Glacial till is ubiquitous in the region. It appears to be thin in most of the area surrounding the Murvey Prospect, and rock exposures are relatively common. Basal till is an effective medium for geochemical soil sampling. Peat bogs do not appear to be a deterrent in this region. However, local ice-contact deposits, if present, may mask the underlying till.

Sand dunes composed of material derived from the sea bottom, including abundant shell fragments, are present along the coast south of the Murvey Prospect. These dunes, modified by natural forces, and by a history of human interference through grazing, constitute the distinct morphological and ecological habitat designated as machair. The system is typified by highly calcareous sand, supporting vegetation that is composed almost entirely of grasses and other herbaceous plants. Machair is restricted to the windswept coasts of northwest Ireland and Scotland. The most recent (1991) inventory listed a total of 50 Irish machair sites (Gaynor, 2006).
The area of degraded dunes that constitutes the Murvey Machair is clearly outlined on the air photo by the light tones, the evident high permeability and the lack of woody vegetation. This interpretation is supported by the soil geochemistry. The <1 part per million molybdenum contour [analytical values were shown as zero] closely approximates the interpreted contact (Figure 6a). In contrast, the drilling area, 400 metres to the north, is typified by poor drainage and extensive woody vegetation. It is clear that the area of machair shown on Figure 3 is much larger than its actual extent and that machair does not extend into the Murvey Prospect as defined in the present report.

DEPOSIT TYPES

The only known mineralization of interest on the Property is the molybdenite at the Murvey Prospect. This can be classified as Porphyry Molybdenum type. The Mace Prospect, located 10 kilometres to the southeast, is very similar, but it has a significant copper content in the form of disseminated chalcopyrite. Disseminated mineralization or copper in any form is not mentioned in the literature pertaining to the Murvey Prospect. However, three of the untested soil geochemical molybdenum anomaly-areas have significant copper indications.

The Highmont deposit in the Highland Valley of British Columbia is similar to the Galway Granite prospects in many respects, but molybdenum is more important relative to copper in the latter and the association with faulting is much more obvious (Bergey, 1971). The molybdenite at the Highmont Mine, as it is at the Murvey Prospect, was emplaced predominantly in quartz veins and fracture fillings within a granitic intrusion that is part of a composite batholith.

MINERALIZATION

[The following account is derived mainly from Gasse (2008). It relates mainly to surface mineralization. No description of mineralization outside of the “drilling area” and its environs is available.]

The molybdenum mineralization at Murvey was deposited within the northwestern contact zone of the Galway Granite. Published geological reports indicate that all visible surface mineralization is confined to the granite, with no dispersion into the adjacent metamorphic rocks. Occurrences of chalcopyrite are stated to occur but these rarely are widely disseminated.

Molybdenite is stated to be common in a zone within the granite about 530m long and parallel to the granite margin. Scattered occurrences are reported to be present up to an additional 500m along the strike of the prospect in each direction. Little or no molybdenite was found in the country-rock schists, and none has been found more than 70m away from the contact.
Two sets of joints are prominent; one lies parallel to a NNW-trending porphyry dyke swarm, while the other is parallel to the granite margin. The molybdenite occurs in a vein quartz groundmass in the fractures, which are accompanied by local syn-mineralization alteration of the granite typified by bleaching and epidotization. However, some zones of kaolinization may lack mineralization.

EXPLORATION

No exploration work has been carried out by Highbank Resources Ltd.

Previous exploration described in the literature consisted mainly of soil geochemical surveys and diamond drilling. The latter is described in the following section of this report.

Several soil geochemical surveys were carried out on the Property. The only one for which I have complete data was a semi-reconnaissance survey. Samples were collected at intervals of 225 feet along lines spaced at 500 feet and were analyzed for molybdenum and copper. The results of this work are adequate for the purposes of the present report.

Five discrete areas of anomalous molybdenum occur within an area of about one square kilometre (Figure 6a). They can be described as moderately strong (30 to 120 p.p.m. contours). [Absolute values of till samples are not especially prognostic of the grade of mineralization. The anomalous indications at Murvey are somewhat weaker and less extensive than the unusually strong anomalies associated with the Mace Prospect [Bergey, 2008]. However, molybdenum values as low as 9 p.p.m. proved to be indicative of ore at the Highmont Mine [Bergey, 1971].]

The linear anomaly in the south-eastern part of the Prospect appears to reflect the zone of molybdenum mineralization noted in outcrop and intersected in diamond drilling, but it extends considerably farther to the east. A possible western extension of the anomaly is not well defined since Namanawaun Lough formerly occupied this area.

Copper geochemical anomalies are relatively weak, even relative to the very low “background” copper content. There are no anomalous copper values associated with the molybdenum anomaly in the “drilling area.” However, there is good correlation between copper and molybdenum in the three north-western anomalies. A weak copper anomaly occupies most of the area between the pair of northeast–trending faults, an area indicated by drilling to be underlain by mafic metamorphic rocks. Since elevated copper values are characteristic of mafic rocks, this suggests the possibility that this anomaly reflects the “background” in the underlying metamorphics. Northwest of the fault pair, the copper background is at the same low level as it is over granite. Since several strong molybdenum anomalies were outlined in this area, and given the strong affinity of molybdenum and granitic rocks, it is not unreasonable to infer that it is underlain at least in part by (unmapped) granite.
SOIL GEOCHEMICAL SURVEYS

MURVEY PROSPECT
SHOWING INTERPRETED FAULTS

MOLYBDENUM (PARTS PER MILLION)

COPPER (parts per million)

FIGURE 6
DRILLING

Two diamond drilling programs were carried out on the Murvey Prospect:
 1) 1953-54 by Geological Survey of Ireland – 1428 metres in 24 holes;
 2) 1969-70 by Anglo United Trust – 695 metres in 14 holes.

All of the drilling was designed to test molybdenite mineralization noted in outcrop within the Murvey granite, close to its contact with metamorphic rocks.

Information on the results of the diamond drilling at Murvey is difficult to obtain. I obtained copies of “abbreviated drill logs” and molybdenite assays for the 1953-54 drilling, as well as a map showing the locations of holes from both programs. However, I was not able to locate either logs or assay results from the 1969-70 program which was a follow-up to the earlier drilling in the same area.

Examination of the assay data suggests that 18 of the 24 holes in the first program intersected significant molybdenum mineralization. These are indicated on Figure 7. My criterion for inclusion was an average of at least 0.05% Mo over a core length of 6 metres or more. (The sampling interval was 3 metres in most cases.)

The drilling was confined to an east-northeast-trending zone 300 metres in length. The zone appears to follow the contact of the Murvey granite with the metamorphic rocks to the northwest. However, the geology is poorly defined and the situation is complicated by faulting.

The relationship of the diamond drill holes from the two programs to the soil geochemical contours and to the interpreted NE and ENE fault pairs is illustrated on Figure 7. The geochemical anomaly appears follow a NNE fault and to terminate at a NE fault. However, the geochemical survey lies are widely spaced and the western part of the mineralized zone was covered by a shallow lake at the time of sampling. The drilling indicates that the mineralized zone continues beyond the NE fault. My tentative interpretation is that the zone is offset to the southwest by the fault.

The mineralized zone is open at both ends. The bottom 17 metres of drill hole TA24 at the western terminus of the drilling assayed 0.094% Mo across 17 metres. TA 12 intersected 0.12% Mo across 6 metres at the eastern end.

The assay results should be considered as approximations only. At the Mace Prospect it was determined that there were substantial losses of molybdenite in the coring process. This subject is discussed in the following section.
SAMPLING METHOD AND APPROACH

The apparent loss of molybdenite in the drilling programs appears to be by far the most important problem affecting the quality of the sampling. The problem was recognized early on at both Murvey (1959-60) and Mace by the Anglo United geologists, who recommended changes in the drilling procedure following the Stage 1 program at Mace. A sludge splitter was used on the final seven diamond drill holes in order to check on the core loss. The Anglo United final report concluded, “Although only a small percentage of the drilling can be directly compared in this way it indicates that a considerable amount of molybdenum, ranging from 20-45% [emphasis mine] of the total content, is lost from the core during drilling.”

Loss of molybdenite in coring probably was even worse in the case of the 1953-54 drilling at Murvey since a smaller core size and a lighter drill almost certainly were utilized. During that period the most common core size (in Canada, at least) was EX. At 7/8”, this core would have been little more than one-half the diameter (or one-quarter the cross-sectional area) of the BX core used by Anglo United in Ireland.

A serious loss of molybdenite is inherent in sampling with the diamond drill because of the platy and friable nature of the mineral. (In the Highmont Mine feasibility study an upgrading factor was applied to compensate for the loss of molybdenite in coring.) It is particularly apparent where, as in the present case, the mineral occurs along fractures or in quartz veins. The friable molybdenite tends to separate readily from the rock and become ground up and lost to the sludge.

Sludge sampling can give some indication of such loss, but the sludge sample itself provides only a minimum estimate of the molybdenum grade. The reason for this is that molybdenite is a platy mineral that “floats” readily in moving water, particularly if accompanied by the ubiquitous grease that was a hallmark of diamond drilling in the 1960’s, and it is lost in the overflow when the sample is collected. The same is true of percussion or rotary drilling, even if “reverse-circulation” equipment is utilized, unless special precautions are undertaken. [It was standard practice during the operation of the Highmont Mine open pit to run all of the cuttings from the blast holes through a cyclone for de-watering prior to collecting the sample for assaying.]

Fortunately, diamond drilling techniques have advanced considerably since the previous drilling was undertaken. With the use of larger core sizes and better drilling equipment it is possible to collect a core sample that reflects the grade of molybdenite much more accurately in most cases.
Summary of relevant drill core composites

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Interval (m)</th>
<th>Core length (m)</th>
<th>Mo Analysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 1</td>
<td>0 - 15</td>
<td>15</td>
<td>0.041</td>
</tr>
<tr>
<td>TA 2</td>
<td>3 – 18</td>
<td>15</td>
<td>0.088</td>
</tr>
<tr>
<td>TA 3</td>
<td>0 - 6</td>
<td>6</td>
<td>0.051</td>
</tr>
<tr>
<td>TA 4</td>
<td>0 - 9</td>
<td>9</td>
<td>0.060</td>
</tr>
<tr>
<td>TA 5</td>
<td>0 – 18</td>
<td>18</td>
<td>0.161</td>
</tr>
<tr>
<td>TA 6</td>
<td>0 – 12</td>
<td>12</td>
<td>0.052</td>
</tr>
<tr>
<td>TA 7</td>
<td>3 – 12</td>
<td>9</td>
<td>0.034</td>
</tr>
<tr>
<td>TA 8</td>
<td>6 – 18</td>
<td>12</td>
<td>0.034</td>
</tr>
<tr>
<td>TA 9</td>
<td>0 – 12</td>
<td>12</td>
<td>0.042</td>
</tr>
<tr>
<td>TA 10</td>
<td>0 - 6</td>
<td>6</td>
<td>0.063</td>
</tr>
<tr>
<td>TA 12</td>
<td>3 - 9</td>
<td>6</td>
<td>0.072</td>
</tr>
<tr>
<td>TA 13</td>
<td>0 - 9</td>
<td>9</td>
<td>0.060</td>
</tr>
<tr>
<td>TA 15</td>
<td>0 - 9</td>
<td>9</td>
<td>0.030</td>
</tr>
<tr>
<td>TA 17</td>
<td>21 – 44</td>
<td>23</td>
<td>0.120</td>
</tr>
<tr>
<td>TA 19</td>
<td>33 – 51</td>
<td>18</td>
<td>0.083</td>
</tr>
<tr>
<td>TA 20</td>
<td>40 – 64</td>
<td>24</td>
<td>0.045</td>
</tr>
<tr>
<td>TA 21</td>
<td>40 – 58</td>
<td>18</td>
<td>0.041</td>
</tr>
<tr>
<td>TA 22</td>
<td>0 – 73</td>
<td>73</td>
<td>0.120</td>
</tr>
<tr>
<td>TA 24</td>
<td>52 – 70</td>
<td>18</td>
<td>0.094</td>
</tr>
</tbody>
</table>

SAMPLE PREPARATION, ANALYSES AND SECURITY

The writer was unable to obtain any information on the sample preparation, analyses and security pertaining to the drilling program carried out by the Geological Survey of Ireland.

The core selected analysis by Anglo United Trust was split in order to preserve material for re-examination or for check analyses. One-half was bagged and sent to a laboratory where crushing, splitting and grinding were carried out. I was unable to obtain information on the certification on the Irish laboratory where the assaying was done.

It was not customary for tight security to be undertaken in the sampling and assaying for base-metals during the period in which drilling was carried out.

DATA VERIFICATION

The writer has not carried out any data verification on the drilling and geochemical results quoted in the present report.

ADJACENT PROPERTIES

There are no adjacent mining properties.
MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been carried out in connection with the Mace Prospect.

MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES

No mineral resource or mineral reserve estimates have been carried out in connection with the Mace Prospect.

INTERPRETATION AND CONCLUSIONS

Previous exploration work identified a molybdenum prospect within the southern portion of present Murvey Property. The molybdenum was found in fractures and in quartz veins and stringers within the Murvey granite, a phase of the Galway Granite batholith. Geochemical soil sampling outlined five molybdenum anomalies within an area of about one square kilometre surrounding the discovery area. A total of 38 holes were completed in two diamond drilling programs. The drilling was confined to a portion of the most south-easterly anomaly. Drill logs and analytical results were available to the writer only for the 24 holes from the initial program.

The initial drilling program apparently was based exclusively on surface trenching since there is no record of geochemical sampling or other technical surveys prior to the date of this drilling. The entire second drilling program was carried out within the confines of the earlier drill testing.

My evaluation of the available drilling results indicated that 18 of 24 holes contained one or more significant molybdenum intersections. The Geological Survey of Ireland published an unsubstantiated resource estimate of 240,000 tonnes at 0.13% Mo that should be viewed only as a general indication of the type of mineralization in the area. I believe that the indicated grade of molybdenum in the drilling may be regarded as a lower limit since a substantial amount of molybdenite almost certainly was lost in the coring process. Limited test work at the Mace Prospect, which lies 10 kilometres southeast of Murvey, suggested that this possible loss amounted to 20-45% of the molybdenum contained in the rock.

There is no record of follow-up exploration on the four soil geochemical anomalies that are located northwest of the “drilling area.” These anomalous zones are underlain by rocks mapped as part of a metamorphic complex, a rock unit regarded as unfavourable for the occurrence of molybdenum. Several lines of evidence suggest that substantial amounts of granitic rock are present in this part of the area as well. In any event, it is obvious that geochemical indications of approximately the same magnitude as the one associated with the known mineralized zone should not be disregarded.

The writer concludes that the previous work has identified a molybdenum prospect that represents an attractive exploration target with a high potential for the enhancement of
both size and grade. A program of surface exploration and diamond drilling is warranted. The prime objectives of the work should be: 1) to determine the quality of the molybdenum mineralization in the zone tested by previous drilling that probably experienced a severe loss of molybdenite, and 2) to scrutinize the 80% of the Murvey Prospect that apparently has not been explored.

RECOMMENDATIONS

It is recommended that a program of detailed geological mapping and prospecting be carried out over the Murvey Prospect area. A photo-geological interpretation covering the entire Property should be undertaken at the same time, but with greater detail in the vicinity of the Murvey Prospect. Within the previous drilling area the main emphasis should be placed on the attitude of the molybdenite-bearing structures in order to ensure the optimum orientation of the diamond drill holes. Trenching will be required to achieve this objective. In the remainder of the prospect area the mapping should be oriented toward the discovery and evaluation of molybdenum-(copper?) zones within the soil geochemical anomaly areas. Again, trenching will be required.

Diamond drilling is recommended for the south-eastern anomaly area that was partially tested by previous drilling. Three drill holes, each 100 metres in length, are recommended to test portions of the known mineralized zone. The purpose is to verify the previous results and to allow an estimate to be made of the loss of molybdenite. Two drill holes, each 150 metres in length, are recommended to test the extensions of the known mineralized zone. (The western extension was overlain by a shallow lake at the time that previous drilling and soil sampling was carried out. The eastern extension includes the strongest portion of the geochemical anomaly.)

The orientation and precise locations of the diamond drill holes should be determined after the completion of the geological mapping and trenching. However, the decision to carry out the drilling is not contingent on the results of this work.

Cost Estimate

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond drilling: 600 metres@ US200</td>
<td>$120,000</td>
</tr>
<tr>
<td>Trenching</td>
<td>15,000</td>
</tr>
<tr>
<td>Geological mapping, air-photo interpretation, report preparation</td>
<td>25,000</td>
</tr>
<tr>
<td>Travel and transportation:</td>
<td>8,000</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>US$ 168,000</td>
</tr>
</tbody>
</table>

[Note: The cost shown for diamond drilling includes geological supervision, accommodation, core handling, assaying and environmental remediation.]
REFERENCES

Respectfully submitted,

[Signature]

Consulting Geologist

November 21, 2008.
TECHNICAL GLOSSARY

air photo interpretation. The identification of rock types and geological structures from stereoscopic examination of aerial photos.

anomaly. Value higher or lower than the expected or norm.

EX drill core. Designation of core size in diamond drilling.

batholith. A large intrusive body of igneous rock.

chalcopyrite Common copper sulphide mineral, CuFeS2.

diamond drilling. Drilling method which obtains a cylindrical core of rock by drilling with an annular bit set with diamonds.

dip. The angle at which a stratum or fault is inclined from the horizontal.

disseminated. Mineralization distributed throughout a rock rather than in veins or fractures.

drill core. Rock samples recovered by diamond drilling.

dip. A fracture in rock where relative displacement of the two sides is indicated.

geochemical prospecting. Application of analytical chemistry to mineral exploration.

Intrusive. A body of igneous rock that invades older rocks.

magnetic survey. A geophysical technique which measures variations in the Earth’s magnetic field.

metamorphic. Pertaining to rocks that have been subjected to heat and pressure at depth in the Earth’s crust.

molybdenite. The predominant ore mineral of molybdenum, MoS2.

pluton. A large body of igneous rock formed beneath the Earth's surface.

porphyry copper deposits. Very large, generally low-grade mineral deposit that usually occurs in association with igneous intrusions. They include Cu, Cu-Mo, Cu-Au sub-types.

soil sampling. Geochemical prospecting method used to determine the distribution of various elements in the soil.
CERTIFICATE OF AUTHOR

I, William Richard Bergey, P.Eng., do hereby certify that:

a) I am a Consulting Geologist with an office at 25789-8th Avenue, Aldergrove, B.C.,
Canada V4W 2J8.

September 5, 2008.

c) I graduated in Geology (Honours B.A.) from McMaster University in 1947. I am a
member of the Association of Professional Engineers, Geologists and Geophysicists of
the Province of British Columbia, and I am a Senior Fellow of the Geological Society of
America. I have been involved in most aspects of mineral exploration for the past 61
years. I believe that I am a "qualified person" for the purposes of NI 43-101.

d) I carried out a one-day examination of the Murvey Prospect during 2006. I also
examined the files of the Geological Survey of Ireland in 2005 in order to determine
whether additional exploration had been carried out after my previous visit.

e) I am responsible for preparation of all sections of the Technical Report.

f) I am independent of the issuer as described in Section 1.4 of NI 43-101.

g) My previous involvement with the property was a one-day examination of the Mace
Prospect in March 1981 on behalf of Teck Corporation.

h) I have read NI 43-101 and have prepared the Technical Report in compliance with
the Instrument.

i) To the best of my knowledge, information and belief, the Technical Report contains
all scientific and technical information that is required to be disclosed to make the
technical report not misleading.

I consent to the filing of the Technical Report with stock exchanges or other regulatory
authority and any publication by them for regulatory purposes, including electronic
publication of the Technical Report in the public company files on their websites
accessible to the public.

Dated this 21st Day of November, 2008.

[Signature]
Consulting Geologist

[Signature]

Telephone: 604-856-7868
Email: bbergey@shaw.ca